(Figure 2.6): Exsanguination of the liver will be facilitated by inserting tubing into the IVC through the right atrium.	61
(Figure 2.7): Dissociation of the liver and placing it into sterile Petri dish with collagenase solution.	64
(Figure 2.8): The diluted cells were plated at a desired volume on cell culture plates (96-wells).	66
(Figure 3.1): IR spectra for different grades of fully deacetylated chitosan over the frequency range 4000-400 cm -1.	70
(Figure 3.2): DSC thermogram for different grades of fully deacetylated chitosan.	71
(Figure 3.3): Percentage reduction in blood glucose level of STZ diabetic rats given oral insulin formula (50 IU/Kg, n=10) and SC insulin (1 IU/Kg, n=10) compared to a placebo group (Data is as mean \pm SEM).	75
(Figure 3.4): Percentage reduction in blood glucose level of normal rats given oral insulin formula (50 IU/Kg, n=7) and SC insulin (1 IU/Kg, n=7) (Data is as mean \pm SEM).	75
(Figure 3.5): Comparison the percentage reduction in blood glucose level between STZ diabetic and normal rats after oral insulin formula administration (Data is as mean \pm SEM).	76
(Figure 3.6): Comparison the percentage reduction in blood glucose level between STZ diabetic and normal rats after subcutaneous insulin administration (Data is as mean \pm SEM).	76
(Figure 3.7): Intestinal absorption of insulin from oral insulin formula and Rh-insulin solution in normal rat after 60 min incubation by everted gut sac experiment. Data are as mean of 10 sacs \pm SEM. (*: p<0.05, **: p<0.001)	79
(Figure 3.8): Intestinal absorption of insulin from oral insulin formula and Rh-insulin solution in diabetic rat after 60 min incubation by everted gut sac experiment. Data are as mean of 10 sacs \pm SEM. (*: p < 0.05)	80
(Figure 3.9): Comparison the intestinal absorption profile between normal and diabetic gut sacs after incubation with oral insulin formula. (Data is as mean \pm SEM) (*: p<0.05)	81
(Figure 3.10): Comparison the intestinal absorption profile between normal and diabetic gut sacs after incubation with Rh-insulin solution. (Data is as mean \pm SEM) (*: p<0.05)	81
(Figure 3.11): Plot showing percentage of blood glucose levels of normal rats after in situ intestinal perfusion of Rh-insulin solution and placebo with SC insulin. (Data is as mean \pm SEM).	84